Step 1: Recall the conductivity relation.
For an intrinsic semiconductor:
\[
\sigma = \sigma_0 \exp\left(-\frac{E_g}{2k_B T}\right)
\]
Step 2: Write ratio of conductivities.
\[
\frac{\sigma_2}{\sigma_1} = \exp\left(\frac{E_g}{2k_B} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right)
\]
Given: $\sigma_1 = 100$ at $T_1 = 300$ K, $\sigma_2 = 300$ at $T_2 = 500$ K.
\[
\frac{\sigma_2}{\sigma_1} = \frac{300}{100} = 3
\]
Step 3: Substitute values.
\[
\ln(3) = \frac{E_g}{2 \times 8.6 \times 10^{-5}} \left(\frac{1}{300} - \frac{1}{500}\right)
\]
Compute inside:
\[
\frac{1}{300} - \frac{1}{500} = \frac{500 - 300}{150000} = \frac{200}{150000} = 0.001333
\]
Denominator factor:
\[
2 \times 8.6 \times 10^{-5} = 1.72 \times 10^{-4}
\]
So:
\[
\ln(3) = 1.099 = \frac{E_g \times 0.001333}{1.72 \times 10^{-4}}
\]
\[
E_g = \frac{1.099 \times 1.72 \times 10^{-4}}{0.001333} \approx 0.72 \, eV
\]
Final Answer:
\[
\boxed{0.72 \, eV}
\]