The given first-order linear differential equation is \( (x^2+1)\frac{dy}{dx} + xy = x^3 \).
First, write it in the standard form \( \frac{dy}{dx} + P(x)y = Q(x) \).
Divide by \((x^2+1)\):
\[ \frac{dy}{dx} + \frac{x}{x^2+1}y = \frac{x^3}{x^2+1} \]
Here, \( P(x) = \frac{x}{x^2+1} \).
The integrating factor (I.F.) is \( e^{\int P(x)dx} \).
Calculate \( \int P(x)dx = \int \frac{x}{x^2+1} dx \).
Let \(u = x^2+1\), then \(du = 2x dx\), so \(x dx = \frac{1}{2}du\).
\[ \int \frac{x}{x^2+1} dx = \int \frac{1}{u} \cdot \frac{1}{2}du = \frac{1}{2} \ln|u| = \frac{1}{2} \ln(x^2+1) \]
(Since \(x^2+1>0\), absolute value is not needed).
This can be written as \( \ln((x^2+1)^{1/2}) = \ln\sqrt{x^2+1} \).
So, the Integrating Factor is:
\[ I.F. = e^{\ln\sqrt{x^2+1}} = \sqrt{x^2+1} \]
This matches option (c).
Option (d) \( e^{\log(1+x^2)} \), if \(\log\) is natural log, is \(1+x^2\).
\[ \boxed{\sqrt{1+x^2}} \]