Question:

An increase in the concentration of the reactants of a reaction leads to change in :

Updated On: Jun 23, 2024
  • activation energy
  • heat of reaction
  • threshold energy
  • collision frequency
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Collision frequency $\propto$ number of reactant molecules per unit volume
As concentraction o f reactants o f a reaction increase the number of reactant molecules per unit volume increase which increases the collision frequency
Was this answer helpful?
0
0

Top Questions on Equilibrium Constant

View More Questions

Questions Asked in NEET exam

View More Questions

Concepts Used:

Equilibrium Constant

The equilibrium constant may be defined as the ratio between the product of the molar concentrations of the products to that of the product of the molar concentrations of the reactants with each concentration term raised to a power equal to the stoichiometric coefficient in the balanced chemical reaction.

The equilibrium constant at a given temperature is the ratio of the rate constant of forwarding and backward reactions.

Equilibrium Constant Formula:

Kequ = kf/kb = [C]c [D]d/[A]a [B]b = Kc

where Kc, indicates the equilibrium constant measured in moles per litre.

For reactions involving gases: The equilibrium constant formula, in terms of partial pressure will be:

Kequ = kf/kb = [[pC]c [pD]d]/[[pA]a [pB]b] = Kp

Where Kp indicates the equilibrium constant formula in terms of partial pressures.

  • Larger Kc/Kp values indicate higher product formation and higher percentage conversion.
  • Lower Kc/Kp values indicate lower product formation and lower percentage conversion.

Medium Kc/Kp values indicate optimum product formation.

Units of Equilibrium Constant:

The equilibrium constant is the ratio of the concentrations raised to the stoichiometric coefficients. Therefore, the unit of the equilibrium constant = [Mole L-1]△n.

where, ∆n = sum of stoichiometric coefficients of products – a sum of stoichiometric coefficients of reactants.