An ideal monatomic gas of $ n $ moles is taken through a cycle $ WXYZW $ consisting of consecutive adiabatic and isobaric quasi-static processes, as shown in the schematic $ V-T $ diagram. The volume of the gas at $ W, X $ and $ Y $ points are, $ 64 \, \text{cm}^3 $, $ 125 \, \text{cm}^3 $ and $ 250 \, \text{cm}^3 $, respectively. If the absolute temperature of the gas $ T_W $ at the point $ W $ is such that $ n R T_W = 1 \, J $ ($ R $ is the universal gas constant), then the amount of heat absorbed (in J) by the gas along the path $ XY $ is 
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Two identical plates $ P $ and $ Q $, radiating as perfect black bodies, are kept in vacuum at constant absolute temperatures $ T_P $ and $ T_Q $, respectively, with $ T_Q<T_P $, as shown in Fig. 1. The radiated power transferred per unit area from $ P $ to $ Q $ is $ W_0 $. Subsequently, two more plates, identical to $ P $ and $ Q $, are introduced between $ P $ and $ Q $, as shown in Fig. 2. Assume that heat transfer takes place only between adjacent plates. If the power transferred per unit area in the direction from $ P $ to $ Q $ (Fig. 2) in the steady state is $ W_S $, then the ratio $ \dfrac{W_0}{W_S} $ is ____. 
Considering ideal gas behavior, the expansion work done (in kJ) when 144 g of water is electrolyzed completely under constant pressure at 300 K is ____. Use: Universal gas constant $ R = 8.3 \, \text{J K}^{-1} \text{mol}^{-1} $; Atomic mass (in amu): H = 1, O = 16
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?