Question:

An even number is the determinant of \(\text{(A)} \ \begin{bmatrix} 1 & -1 \\ -1 & 5 \end{bmatrix} \quad \text{(B)} \ \begin{bmatrix} 13 & -1 \\ -1 & 15 \end{bmatrix} \quad \text{(C)} \ \begin{bmatrix} 16 & -1 \\ -11 & 15 \end{bmatrix} \quad \text{(D)} \ \begin{bmatrix} 6 & -12 \\ 11 & 15 \end{bmatrix}\)
Choose the \(\textbf{correct}\) answer from the options given below:  

Show Hint

When calculating the determinant of a \(2 \times 2\) matrix, use the formula \( \text{Determinant} = ad - bc \). The sign of the determinant determines whether the matrix is invertible (non-zero determinant) or singular (zero determinant). Keep in mind that the determinant can also help determine whether a system of linear equations has a unique solution. In this case, calculating and checking the parity (even or odd) of the determinant can be useful in some problems.

Updated On: Mar 29, 2025
  • (A), (B) and (D) only
  • (A), (B) and (C) only
  • (A), (B), (C) and (D)
  • (B), (C) and (D) only
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

The determinant of a \(2 \times 2\) matrix  \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\) is:   
\(\text{Determinant} = ad - bc.\)

Calculate the determinants:

Step 1: For (A):  \(\text{Determinant} = (1)(5) - (-1)(-1) = 5 - 1 = 4 \text{ (even)}.\)

Step 2: For (B):  \(\text{Determinant} = (13)(15) - (-1)(-1) = 195 - 1 = 194 \text{ (even)}.\)

Step 3: For (C):  \(\text{Determinant} = (16)(15) - (-1)(-11) = 240 + 11 = 251 \text{ (odd)}.\)

Step 4: For (D):  \(\text{Determinant} = (6)(15) - (-12)(11) = 90 + 132 = 222 \text{ (even)}.\)

Thus, matrices (A), (B), and (D) have even determinants. 

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

The determinant of a \(2 \times 2\) matrix \[ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \] is given by: \[ \text{Determinant} = ad - bc. \]

Step 1: Calculate the determinant for matrix (A):

For matrix (A): \[ \text{Determinant} = (1)(5) - (-1)(-1) = 5 - 1 = 4 \text{ (even)}. \]

Step 2: Calculate the determinant for matrix (B):

For matrix (B): \[ \text{Determinant} = (13)(15) - (-1)(-1) = 195 - 1 = 194 \text{ (even)}. \]

Step 3: Calculate the determinant for matrix (C):

For matrix (C): \[ \text{Determinant} = (16)(15) - (-1)(-11) = 240 + 11 = 251 \text{ (odd)}. \]

Step 4: Calculate the determinant for matrix (D):

For matrix (D): \[ \text{Determinant} = (6)(15) - (-12)(11) = 90 + 132 = 222 \text{ (even)}. \]

Conclusion: Thus, matrices (A), (B), and (D) have even determinants, while matrix (C) has an odd determinant.

Was this answer helpful?
0
0

Top Questions on Matrices and Determinants

View More Questions