The Lineweaver-Burk equation is given by:
\[ \frac{1}{v} = \frac{K_m}{V_{\text{max}}} \cdot \frac{1}{[S]} + \frac{1}{V_{\text{max}}} \]where:
From the equation, the slope of the Lineweaver-Burk plot is:
\[ \text{slope} = \frac{K_m}{V_{\text{max}}} \]and the intercept on the \( y \)-axis is:
\[ \text{intercept} = \frac{1}{V_{\text{max}}}. \] Step 2: Calculating \( V_{\text{max}} \).The intercept is given as:
\[ \text{intercept} = \frac{1}{V_{\text{max}}} = 0.357 \, \text{mmol}^{-1} \text{dm}^{3} \text{s}. \]Thus:
\[ V_{\text{max}} = \frac{1}{0.357} \approx 2.80 \, \text{mmol} \, \text{dm}^{-3} \, \text{s}^{-1}. \] Step 3: Calculating \( K_m \).The slope is given as:
\[ \text{slope} = \frac{K_m}{V_{\text{max}}} = 2.10 \, \text{s}. \]Substituting \( V_{\text{max}} = 2.80 \, \text{mmol} \, \text{dm}^{-3} \, \text{s}^{-1} \):
\[ K_m = \text{slope} \times V_{\text{max}} = 2.10 \times 2.80 = 5.88 \, \text{mmol} \, \text{dm}^{-3}. \] Step 4: Conclusion.The Michaelis constant for the reaction is:
\[ K_m = 5.88 \, \text{mmol} \, \text{dm}^{-3}. \]Write IUPAC names of the following coordination entities:
(a) \( [Fe(en)_2Cl_2]^+ \)
(b) \( [Co(NH_3)_4(H_2O)Br]SO_4 \)
(c) \( [Ni(CN)_4]^{2- \)