We are given:
- \( OB \) is the semi-minor axis (\( b \)),
- \( S \), \( S' \) are the foci of the ellipse,
- \( \angle SBS' = 90^\circ \)
We are to find the eccentricity \( e \) of the ellipse.
Step 1: Basic properties of ellipse
- For an ellipse with semi-major axis \( a \) and semi-minor axis \( b \), the focal length is:
\[
c = ae = \sqrt{a^2 - b^2}
\]
- Coordinates: focus at \( (\pm c, 0) \), and point \( B \) on the ellipse is \( (0, b) \)
Step 2: Geometry of triangle \( \triangle SBS' \)
We are told \( \angle SBS' = 90^\circ \). That means triangle \( SBS' \) is a right-angled triangle at vertex \( B \).
Use the converse of the circle property: If angle \( B \) in triangle \( SBS' \) is \( 90^\circ \), then \( SB \perp S'B \). Also, this triangle lies on a circle with diameter \( SS' \).
So, apply the Pythagorean Theorem in triangle \( SBS' \):
\[
SB^2 + S'B^2 = SS'^2
\]
But due to symmetry: \( SB = S'B \), and \( SS' = 2c \)
So:
\[
2 \cdot SB^2 = (2c)^2 = 4c^2
\Rightarrow SB^2 = 2c^2
\]
But point \( B = (0, b) \), and focus \( S = (c, 0) \)
Then:
\[
SB^2 = (c - 0)^2 + (0 - b)^2 = c^2 + b^2
\Rightarrow c^2 + b^2 = 2c^2
\Rightarrow b^2 = c^2
\Rightarrow \frac{b^2}{a^2} = \frac{c^2}{a^2} = e^2
\Rightarrow e = \frac{b}{a}
\]
But since \( b^2 = a^2 - c^2 \) and \( c^2 = b^2 \), then:
\[
b^2 = a^2 - b^2 \Rightarrow 2b^2 = a^2 \Rightarrow \frac{b^2}{a^2} = \frac{1}{2}
\Rightarrow e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{1}{2}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}
\]
Hence, the eccentricity of the ellipse is \( \boxed{\frac{1}{\sqrt{2}}} \)