Step 1: Use decay formula
\[
N_0 = N + N_d
\]
Where \(N_0\) initial nuclei, \(N\) remaining, \(N_d\) decayed. Given ratio \(X:Y = 1:7\), so \(N : N_d = 1 : 7\)
Step 2: Calculate fraction remaining
\[
\frac{N}{N_0} = \frac{1}{1+7} = \frac{1}{8}
\]
Step 3: Use decay law
\[
\frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{t}{T}}
\]
where \(T = 1.4 \times 10^9\) years (half-life), solve for \(t\):
\[
\left(\frac{1}{2}\right)^{\frac{t}{1.4 \times 10^9}} = \frac{1}{8} = \left(\frac{1}{2}\right)^3
\]
\[
\frac{t}{1.4 \times 10^9} = 3 \implies t = 4.2 \times 10^9\, \text{years}
\]
Step 4: Conclusion
The age of the rock is \(4.2 \times 10^9\) years.