An element with molar mass \( 2.7 \times 10^{-2} \) kg mol\(^{-1}\) forms a cubic unit cell with an edge length of 405 pm. If its density is \( 2.7 \times 10^3 \) kg m\(^{-3}\), the number of atoms present in one unit cell is:
(Given: \( N_A = 6.023 \times 10^{23} \) mol\(^{-1}\))
Show Hint
For FCC unit cells, \( Z = 4 \), while for BCC and simple cubic, \( Z = 2 \) and \( Z = 1 \), respectively.
Step 1: Using the Density Formula for a Unit Cell
The number of atoms per unit cell (\( Z \)) can be calculated using the formula:
\[
Z = \frac{\rho \times N_A \times a^3}{M}
\]
where:
- \( \rho = 2.7 \times 10^3 \) kg m\(^{-3}\) (density)
- \( M = 2.7 \times 10^{-2} \) kg mol\(^{-1}\) (molar mass)
- \( a = 405 \) pm = \( 405 \times 10^{-12} \) m (edge length of the unit cell)
- \( N_A = 6.023 \times 10^{23} \) mol\(^{-1}\) (Avogadro’s number)
\bigskip
Step 2: Calculating the Volume of the Unit Cell
\[
a^3 = (405 \times 10^{-12})^3
\]
\[
= 6.64 \times 10^{-29} \text{ m}^3
\]
\bigskip
Step 3: Substituting Values into the Formula
\[
Z = \frac{(2.7 \times 10^3) \times (6.023 \times 10^{23}) \times (6.64 \times 10^{-29})}{2.7 \times 10^{-2}}
\]
\[
Z = \frac{(1.08 \times 10^{-2}) \times (6.023 \times 10^{23})}{2.7 \times 10^{-2}}
\]
\[
Z = \frac{6.5 \times 10^{21}}{2.7 \times 10^{-2}}
\]
\[
Z = 4
\]
Thus, the number of atoms per unit cell is:
\[
\mathbf{4}
\]
\bigskip