Question:

An element l=xi^\triangle l=\triangle x \hat i is placed at the origin and carries a large current I = 10A. The magnetic field on the y-axis at a distance of 0.5 m from the elements x of 1 cm length is :
The magnetic field on the y-axis at a distance of 0.5 m

Updated On: Mar 22, 2025
  • 4×108,T4 \times 10^{-8} , \text{T}
  • 8×108,T8 \times 10^{-8} , \text{T}
  • 12×108,T12 \times 10^{-8} , \text{T}
  • 10×108,T10 \times 10^{-8} , \text{T}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The position vector for the field point is:

r=0.5j^ \vec{r} = 0.5\hat{j}

The magnetic field produced by the current element Δl\Delta l is given by the Biot-Savart law:

dB=μ0I(Δl×r)4πr3 dB = \frac{\mu_0 I (\Delta \vec{l} \times \vec{r})}{4\pi r^3}

element vector

Here,

Δl=Δxi^=1100i^m,r=0.5j^m,r=r=0.5m \Delta \vec{l} = \Delta x \hat{i} = \frac{1}{100}\hat{i} \, \text{m}, \quad \vec{r} = 0.5\hat{j} \, \text{m}, \quad r = |\vec{r}| = 0.5 \, \text{m}

Δl×r=i^j^k^11000000.50=1100×0.5k^=1200k^ \Delta \vec{l} \times \vec{r} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{1}{100} & 0 & 0 \\ 0 & 0.5 & 0 \end{vmatrix} = \frac{1}{100} \times 0.5 \hat{k} = \frac{1}{200} \hat{k}

Substituting values into the Biot-Savart law:

dB=107×10×1200(0.5)3T dB = \frac{10^{-7} \times 10 \times \frac{1}{200}}{(0.5)^3} \, \text{T}

dB=107×10×120018=4×108T dB = \frac{10^{-7} \times 10 \times \frac{1}{200}}{\frac{1}{8}} = 4 \times 10^{-8} \, \text{T}

Hence, the magnetic field is:

dB=4×108k^T dB = 4 \times 10^{-8} \hat{k} \, \text{T}

Was this answer helpful?
0
0