The position vector for the field point is:
\[ \vec{r} = 0.5\hat{j} \]
The magnetic field produced by the current element $\Delta l$ is given by the Biot-Savart law:
\[ dB = \frac{\mu_0 I (\Delta \vec{l} \times \vec{r})}{4\pi r^3} \]
Here,
\[ \Delta \vec{l} = \Delta x \hat{i} = \frac{1}{100}\hat{i} \, \text{m}, \quad \vec{r} = 0.5\hat{j} \, \text{m}, \quad r = |\vec{r}| = 0.5 \, \text{m} \]
\[ \Delta \vec{l} \times \vec{r} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{1}{100} & 0 & 0 \\ 0 & 0.5 & 0 \end{vmatrix} = \frac{1}{100} \times 0.5 \hat{k} = \frac{1}{200} \hat{k} \]
Substituting values into the Biot-Savart law:
\[ dB = \frac{10^{-7} \times 10 \times \frac{1}{200}}{(0.5)^3} \, \text{T} \]
\[ dB = \frac{10^{-7} \times 10 \times \frac{1}{200}}{\frac{1}{8}} = 4 \times 10^{-8} \, \text{T} \]
Hence, the magnetic field is:
\[ dB = 4 \times 10^{-8} \hat{k} \, \text{T} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: