
The position vector for the field point is:
\[ \vec{r} = 0.5\hat{j} \]
The magnetic field produced by the current element $\Delta l$ is given by the Biot-Savart law:
\[ dB = \frac{\mu_0 I (\Delta \vec{l} \times \vec{r})}{4\pi r^3} \]

Here,
\[ \Delta \vec{l} = \Delta x \hat{i} = \frac{1}{100}\hat{i} \, \text{m}, \quad \vec{r} = 0.5\hat{j} \, \text{m}, \quad r = |\vec{r}| = 0.5 \, \text{m} \]
\[ \Delta \vec{l} \times \vec{r} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{1}{100} & 0 & 0 \\ 0 & 0.5 & 0 \end{vmatrix} = \frac{1}{100} \times 0.5 \hat{k} = \frac{1}{200} \hat{k} \]
Substituting values into the Biot-Savart law:
\[ dB = \frac{10^{-7} \times 10 \times \frac{1}{200}}{(0.5)^3} \, \text{T} \]
\[ dB = \frac{10^{-7} \times 10 \times \frac{1}{200}}{\frac{1}{8}} = 4 \times 10^{-8} \, \text{T} \]
Hence, the magnetic field is:
\[ dB = 4 \times 10^{-8} \hat{k} \, \text{T} \]
To solve this problem, we will use the Biot-Savart Law, which gives us the magnetic field \( \text{d}\mathbf{B} \) at a point due to a small current element \( \text{d}\mathbf{l} \). The formula is:
\(\text{d}\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I \, \text{d}\mathbf{l} \times \mathbf{r}}{r^3}\)
Where:
Here, \( \triangle x = 0.01 \text{ m} \) and the point is on the y-axis at \( \mathbf{r} = 0.5 \text{ m} \, \hat{j} \). The cross product \( \text{d}\mathbf{l} \times \mathbf{r} = \triangle x \hat{i} \times 0.5 \hat{j} = \triangle x \cdot 0.5 \cdot \hat{k} \).
The magnitude of the position vector is \( r = 0.5 \text{ m} \). Thus, \( r^3 = (0.5)^3 = 0.125 \text{ m}^3 \).
Now, substituting into the Biot-Savart Law, we get:
\(\text{d}B = \frac{4\pi \times 10^{-7}}{4\pi} \cdot \frac{10 \times 0.01 \times 0.5}{0.125}\)
Simplifying,
\(\text{d}B = 10^{-7} \cdot \frac{0.05}{0.125} = 4 \times 10^{-8} \text{ T}\)
Therefore, the magnetic field at the given point is:
Option A: \(4 \times 10^{-8} \text{ T}\)


In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by: