The position vector for the field point is:
\[ \vec{r} = 0.5\hat{j} \]
The magnetic field produced by the current element $\Delta l$ is given by the Biot-Savart law:
\[ dB = \frac{\mu_0 I (\Delta \vec{l} \times \vec{r})}{4\pi r^3} \]
Here,
\[ \Delta \vec{l} = \Delta x \hat{i} = \frac{1}{100}\hat{i} \, \text{m}, \quad \vec{r} = 0.5\hat{j} \, \text{m}, \quad r = |\vec{r}| = 0.5 \, \text{m} \]
\[ \Delta \vec{l} \times \vec{r} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{1}{100} & 0 & 0 \\ 0 & 0.5 & 0 \end{vmatrix} = \frac{1}{100} \times 0.5 \hat{k} = \frac{1}{200} \hat{k} \]
Substituting values into the Biot-Savart law:
\[ dB = \frac{10^{-7} \times 10 \times \frac{1}{200}}{(0.5)^3} \, \text{T} \]
\[ dB = \frac{10^{-7} \times 10 \times \frac{1}{200}}{\frac{1}{8}} = 4 \times 10^{-8} \, \text{T} \]
Hence, the magnetic field is:
\[ dB = 4 \times 10^{-8} \hat{k} \, \text{T} \]
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: