Question:

An element crystallizes in bcc lattice. The atomic radius of the element is 2.598 \AA. What is the volume (in cm$^3$) of one unit cell?

Show Hint

For bcc lattice, use $a = \dfrac{4r}{\sqrt{3}}$ to find unit cell volume from atomic radius.
Updated On: Jun 4, 2025
  • $6.4 \times 10^{-22}$
  • $2.16 \times 10^{-20}$
  • $2.16 \times 10^{-22}$
  • $2.16 \times 10^{-24}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

For bcc, relation between radius $r$ and edge length $a$ is: $a = \dfrac{4r}{\sqrt{3}}$
$r = 2.598 \ \text{\AA} = 2.598 \times 10^{-8} \ \text{cm}$
$a = \dfrac{4 \times 2.598 \times 10^{-8}}{\sqrt{3}} \approx 5.996 \times 10^{-8} \ \text{cm}$
Volume of unit cell = $a^3 = (5.996 \times 10^{-8})^3 \approx 2.16 \times 10^{-22} \ \text{cm}^3$
Was this answer helpful?
0
0