Given the angular momentum quantization condition:
\[ L = \frac{nh}{2\pi} = \frac{3h}{2\pi} \quad \text{(where } n = 3\text{)} \]
The de Broglie wavelength is calculated as:
\[ \lambda = \frac{h}{mv} = \frac{hr}{mvr} = \frac{hr}{\frac{3h}{2\pi}} = \frac{2}{3}\pi r \]
For a Li²⁺ ion, the radius of the electron orbit is given by:
\[ r = r_0\frac{n^2}{z} \]
\[ r = a_0 \times \frac{3^2}{3} \quad \text{(where } a_0 \text{ is the Bohr radius)} \]
Substituting the radius into the wavelength equation:
\[ \lambda = \frac{2}{3}\pi \times a_0 \times \frac{3^2}{3} = 2\pi a_0 \]
Comparing with the given form \(\lambda = P\pi a_0\), we find:
\[ P = 2 \]