An electron in a hydrogen atom excites from $ n = 2 $ to $ n = 4 $. What is the change in angular momentum?
(Planck's constant $ h = 6.64 \times 10^{-34} \, \text{J s} $)
\( 2.11 \times 10^{-34} \, \text{Js} \)
\( 1.05 \times 10^{-34} \, \text{Js} \)
\( 0.57 \times 10^{-34} \, \text{Js} \)
\( 4.22 \times 10^{-34} \, \text{Js} \)
Angular momentum of electron in \( n^{\text{th}} \) orbit: \[ L_n = n \cdot \frac{h}{2\pi} \] Change in angular momentum: \[ \Delta L = L_4 - L_2 = \left(4 - 2\right) \cdot \frac{h}{2\pi} = 2 \cdot \frac{6.64 \times 10^{-34}}{2\pi} = \frac{6.64 \times 10^{-34}}{\pi} \approx 2.11 \times 10^{-34}\, \text{Js} \]
Which of the following is the correct electronic configuration for \( \text{Oxygen (O)} \)?
Which of the following is/are correct with respect to the energy of atomic orbitals of a hydrogen atom?
(A) \( 1s<2s<2p<3d<4s \)
(B) \( 1s<2s = 2p<3s = 3p \)
(C) \( 1s<2s<2p<3s<3p \)
(D) \( 1s<2s<4s<3d \)
Choose the correct answer from the options given below: