Step 1: The power consumed by the bulb is given by the formula:\( P = \frac{V^2}{R} \) where \( P = 60 \, \text{W} \) and \( V = 120 \, \text{V} \).
Step 2: Rearranging to solve for the resistance of the bulb:\( R_{\text{bulb}} = \frac{V^2}{P} = \frac{120^2}{60} = 240 \, \Omega \)
Step 3: The total resistance required for the correct voltage drop is:\( R_{\text{total}} = \frac{220^2}{60} = 240 \, \Omega \)
Step 4: The series resistance needed is:\( R_{\text{series}} = R_{\text{total}} - R_{\text{bulb}} = 240 \, \Omega - 240 \, \Omega = 200 \, \Omega \)

The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
A Wheatstone bridge is initially at room temperature and all arms of the bridge have same value of resistances \[ (R_1=R_2=R_3=R_4). \] When \(R_3\) resistance is heated, its resistance value increases by \(10%\). The potential difference \((V_a-V_b)\) after \(R_3\) is heated is _______ V. 
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \). 
Choose the correct answer from the options given below:
For x < 0:
f(x) = ex + ax
For x ≥ 0:
f(x) = b(x - 1)2