1. Oxidation and Reduction Reactions:
We are given the following overall reaction for the electrochemical process:
$ \text{N}_2\text{H}_4 + \text{O}_2 \longrightarrow \text{N}_2 + \text{H}_2\text{O}^{2-} $
2. At the Anode (Oxidation):
The oxidation reaction at the anode is:
$ \text{N}_2\text{H}_4 + 4 \text{OH}^- \longrightarrow \text{N}_2 + 4 \text{H}_2\text{O} + 4 e^- $
3. At the Cathode (Reduction):
The reduction reaction at the cathode is:
$ \text{O}_2 + 2 \text{H}_2\text{O} + 4 e^- \longrightarrow 4 \text{OH}^- $
4. Complete Reaction:
The complete reaction combining both oxidation and reduction is:
$ \text{N}_2\text{H}_4 + \text{O}_2 \longrightarrow \text{N}_2 + 2 \text{H}_2\text{O} $
5. Conclusion:
The correct statements are (A) and (C).
To solve the problem, analyze the electrochemical oxidation of hydrazine (\(N_2H_4\)) by oxygen, focusing on reactions at the anode and cathode and products formed.
1. Anode reaction:
In alkaline medium, hydrazine is oxidized at the anode:
\[
N_2H_4 + 4OH^- \rightarrow N_2(g) + 4H_2O + 4e^-
\]
Hydroxide ions react with hydrazine to form nitrogen gas, water, and release electrons.
Option 1 is correct.
2. Cathode reaction:
Oxygen is reduced at the cathode:
\[
O_2 + 2H_2O + 4e^- \rightarrow 4OH^-
\]
Molecular oxygen gets converted to hydroxide ions.
Option 3 is correct.
3. Option 2 analysis:
Hydrazine does not undergo reduction at the cathode in this process; instead, oxygen is reduced. Nascent hydrogen is not formed.
Option 2 is incorrect.
4. By-products:
Electrochemical oxidation of hydrazine mainly produces nitrogen and water; oxides of nitrogen are not major by-products.
Option 4 is incorrect.
Final Answer:
Options 1 and 3 are correct.
List-I (Symbol of electrical property) | List-II (Units) |
---|---|
A) \( \Omega \) | I) S cm\(^{-1}\) |
B) G | II) m\(^{-1}\) |
C) \( \kappa \) | III) S cm\(^2\) mol\(^{-1}\) |
D) G\(^*\) | IV) S |
Two identical concave mirrors each of focal length $ f $ are facing each other as shown. A glass slab of thickness $ t $ and refractive index $ n_0 $ is placed equidistant from both mirrors on the principal axis. A monochromatic point source $ S $ is placed at the center of the slab. For the image to be formed on $ S $ itself, which of the following distances between the two mirrors is/are correct: