The overall reaction for the electrochemical oxidation of hydrazine is:
\[ \text{N}_2\text{H}_4(aq) + \text{O}_2 \rightarrow \text{N}_2 + 2\text{H}_2\text{O} \]
\[ \text{N}_2\text{H}_4 + 4\text{OH}^- \rightarrow \text{N}_2 + 4\text{H}_2\text{O} + 4e^- \]
\[ \text{O}_2 + 2\text{H}_2\text{O} + 4e^- \rightarrow 4\text{OH}^- \]
\[ \text{N}_2\text{H}_4 + \text{O}_2 \rightarrow \text{N}_2 + 2\text{H}_2\text{O} \]
Hence, \( \text{OH}^- \) ions participate in the reaction at the anode, and molecular oxygen gets converted to \( \text{OH}^- \) at the cathode. No oxides of nitrogen are formed as by-products.
For the given cell: \[ {Fe}^{2+}(aq) + {Ag}^+(aq) \to {Fe}^{3+}(aq) + {Ag}(s) \] The standard cell potential of the above reaction is given. The standard reduction potentials are given as: \[ {Ag}^+ + e^- \to {Ag} \quad E^\circ = x \, {V} \] \[ {Fe}^{2+} + 2e^- \to {Fe} \quad E^\circ = y \, {V} \] \[ {Fe}^{3+} + 3e^- \to {Fe} \quad E^\circ = z \, {V} \] The correct answer is: