Within the elastic region, stress (\(\sigma\)) and strain (\(\epsilon\)) are related by Hooke's Law:
$$ \sigma = E \epsilon $$
where E is the Modulus of Elasticity (Young's Modulus).
The yield point marks the end of the elastic region.
The strain at the yield point (\(\epsilon_y\)) corresponds to the yield stress (\(\sigma_y\)).
$$ \sigma_y = E \epsilon_y $$
Rearranging to find the yield strain:
$$ \epsilon_y = \frac{\sigma_y}{E} $$
Given:
Yield Stress \(\sigma_y = 250\) MPa = \(250 \times 10^6\) Pa.
Modulus of Elasticity \(E = 70\) GPa = \(70 \times 10^9\) Pa.
Substitute the values:
$$ \epsilon_y = \frac{250 \times 10^6 \, \text{Pa}}{70 \times 10^9 \, \text{Pa}} = \frac{250}{70 \times 10^3} = \frac{25}{7 \times 10^3} $$
$$ \epsilon_y = \frac{25}{7000} \approx 0.
003571(4).
.
$$
The strain at the yield point is approximately 0.
00357.
Strain is dimensionless.