Step 1: Identify the Formula for de Broglie Wavelength
The de Broglie wavelength ($\lambda$) of a particle is given by the formula:
\[
\lambda = \frac{h}{p}
\]
Where $h$ is Planck's constant and $p$ is the momentum of the particle.
The momentum ($p$) of a particle with mass ($m$) and speed ($v$) is given by $p = mv$.
Substituting this into the de Broglie wavelength formula:
\[
\lambda = \frac{h}{mv}
\]
Step 2: Extract Given Values and Ensure SI Units
Given:
\begin{itemize}
\item Mass of the particle, $m = 6 \times 10^{-30} \text{ kg}$
\item Speed of the particle, $v = 5.5 \times 10^5 \text{ m s}^{-1}$
\item Planck's constant, $h = 6.6 \times 10^{-34} \text{ J s}$
\end{itemize}
All given values are already in their standard SI units (kg, m/s, J s), so no unit conversion is required at this stage.
Step 3: Compute the de Broglie Wavelength (\(\lambda\))
Substitute the given values into the de Broglie wavelength formula:
\[
\lambda = \frac{6.6 \times 10^{-34} \text{ J s}}{(6 \times 10^{-30} \text{ kg}) \times (5.5 \times 10^5 \text{ m s}^{-1})}
\]
First, calculate the denominator (momentum):
\[
mv = (6 \times 10^{-30}) \times (5.5 \times 10^5)
\]
\[
mv = (6 \times 5.5) \times (10^{-30} \times 10^5)
\]
\[
mv = 33 \times 10^{-25} \text{ kg m s}^{-1}
\]
Now, calculate the wavelength:
\[
\lambda = \frac{6.6 \times 10^{-34}}{33 \times 10^{-25}}
\]
\[
\lambda = \frac{6.6}{33} \times \frac{10^{-34}}{10^{-25}}
\]
\[
\lambda = 0.2 \times 10^{-34 - (-25)}
\]
\[
\lambda = 0.2 \times 10^{-9} \text{ m}
\]
To express this in angstroms (\(\text{\AA}\)), recall that $1 \text{ \AA} = 10^{-10} \text{ m}$.
\[
\lambda = 0.2 \times 10^{-9} \text{ m} = (0.2 \times 10) \times 10^{-10} \text{ m}
\]
\[
\lambda = 2 \times 10^{-10} \text{ m}
\]
\[
\lambda = 2 \text{ \AA}
\]
Step 4: Analyze Options
\begin{itemize}
\item Option (1): 200 \(\text{\AA}\). Incorrect.
\item Option (2): 0.2 \(\text{\AA}\). Incorrect.
\item Option (3): 2 \(\text{\AA}\). Correct, as it matches our calculated wavelength.
\item Option (4): 20 \(\text{\AA}\). Incorrect.
\end{itemize}