Step 1: Define the variables
Let the usual speed of the aeroplane be \( x \) km/hr.
Step 2: Write the time equations
- Time taken to travel 1000 km at speed \( x \):
\[
\text{Time} = \frac{1000}{x}
\]
- Time taken to travel 1000 km at reduced speed \( x - 50 \):
\[
\text{Time} = \frac{1000}{x - 50}
\]
Step 3: Set up the equation based on given condition
According to the problem, the difference in time is 1 hour:
\[
\frac{1000}{x - 50} - \frac{1000}{x} = 1
\]
Step 4: Solve for \( x \)
Take LCM:
\[
\frac{1000(x) - 1000(x - 50)}{x(x - 50)} = 1
\]
\[
\frac{1000x - 1000x + 50000}{x(x - 50)} = 1
\]
\[
\frac{50000}{x(x - 50)} = 1
\]
\[
50000 = x(x - 50)
\]
Step 5: Solve the quadratic equation
\[
x^2 - 50x - 50000 = 0
\]
Using the quadratic formula:
\[
x = \frac{-(-50) \pm \sqrt{(-50)^2 - 4(1)(-50000)}}{2(1)}
\]
\[
x = \frac{50 \pm \sqrt{2500 + 200000}}{2}
\]
\[
x = \frac{50 \pm \sqrt{202500}}{2}
\]
\[
x = \frac{50 \pm 450}{2}
\]
Step 6: Find the valid value of \( x \)
\[
x = \frac{50 + 450}{2} = \frac{500}{2} = 250
\]
Since speed cannot be negative, we take \( x = 250 \) km/hr.
Thus, the correct answer is 250 km/hr.