Amplitude modulated wave is represented by VAM = 10[1 + 0.4 cos(2π × 104t] cos(2π × 107t). The total bandwidth of the amplitude modulated wave is :
To determine the total bandwidth of the given amplitude modulated wave, we begin by understanding the formula for an amplitude modulated (AM) signal. The given equation is:
\(V_{AM} = 10 \left[ 1 + 0.4 \cos(2\pi \times 10^4 t) \right] \cos(2\pi \times 10^7 t)\)
where:
The general formula for an AM wave is:
\(V_{AM} = [A + A_m \cos(2\pi f_m t)] \cos(2\pi f_c t)\)
where \(A_m\) is the modulation index.
The total bandwidth of an AM signal is given by:
\(BW = 2f_m\)
Given that the modulating frequency \(f_m = 10\text{ kHz}\), the total bandwidth \(BW\) is calculated as:
\(BW = 2 \times 10\text{ kHz} = 20\text{ kHz}\)
Thus, the total bandwidth of the amplitude modulated wave is 20 kHz, which matches the given correct answer.
The correct answer is (C) : 20 kHz
Bandwidth = 2 × fm
= 2 × 104 Hz
= 20 kHz
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The waves that are produced when an electric field comes into contact with a magnetic field are known as Electromagnetic Waves or EM waves. The constitution of an oscillating magnetic field and electric fields gives rise to electromagnetic waves.
Electromagnetic waves can be grouped according to the direction of disturbance in them and according to the range of their frequency. Recall that a wave transfers energy from one point to another point in space. That means there are two things going on: the disturbance that defines a wave, and the propagation of wave. In this context the waves are grouped into the following two categories: