Concept:
For hydrogen-like species (single-electron systems), the energy of an electron in the $n^{\text{th}}$ orbit is given by:
\[
E_n = -13.6\,\frac{Z^2}{n^2} \text{ eV}
\]
Energy of transition from $n_2$ to $n_1$ is:
\[
\Delta E = 13.6\,Z^2\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)
\]
Step 1: Transition considered is $2 \to 1$, so:
\[
\Delta E = 13.6\,Z^2\left(1 - \frac{1}{4}\right)
= 13.6\,Z^2\left(\frac{3}{4}\right)
\]
Step 2: Check each option.
Option (1): $H$ has $Z=1$
\[
\Delta E = 13.6 \times \frac{3}{4} = 10.2 \text{ eV} \neq 6.8 \text{ eV}
\]
Incorrect.
Option (2): $Li^{2+}$ has $Z=3$
\[
\Delta E = 13.6 \times 9 \times \frac{3}{4} = 91.8 \text{ eV} \neq 13.6 \text{ eV}
\]
Incorrect.
Option (3): $He^{+}$ has $Z=2$
\[
\Delta E = 13.6 \times 4 \times \frac{3}{4} = 40.8 \text{ eV}
\]
Correct.
Option (4): $Be^{3+}$ has $Z=4$
\[
\Delta E = 13.6 \times 16 \times \frac{3}{4} = 163.2 \text{ eV} \neq 13.6 \text{ eV}
\]
Incorrect.
Step 3:
Hence, the correct energy of transition is:
\[
\boxed{40.8\text{ eV}}
\]