For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively:
Halogens are the group 17 elements of the periodic table. The term ‘halogen’ means ‘salt-producing’, hence the name halogens as they possess the tendency to form salts after reacting to metals. It generally has five elements:
These are all naturally occurring halogens but Tennessine (Ts) is an artificially created halogen.
Halogens are highly reactive elements and are highly electronegative. They have a high tendency to react with metals to form salts. They are also known as Group 17 elements. They have 7 electrons in their outer shell with a configuration of (ns2 np5). Fluorine being the first halogen in group 17, is highly reactive. Astatine is a halogen because of its resemblance with iodine despite it being radioactive.
The general electronic configuration for group 17 elements is ns2np5. This configuration clearly shows that they have 7 electrons in their valence shell. They require one more electron to complete their octet and achieve noble gas configuration.