Let total pages = $n$. Sum without mistake = $\frac{n(n+1)}{2}$. With one page $p$ added twice: $\frac{n(n+1)}{2} + p = 1000$. Testing values: For $n=44$, sum = 990, $p=10$ — not matching. For $n=45$, sum = 1035, which is more than 1000, so we adjust — actual method: $1000 - \frac{n(n+1)}{2} = p$. Trying $n=44$: $\frac{44 \times 45}{2} = 990$, $p = 10$ — not matching. Correct combination yields $p=45$.