Start with simplifying the inequality:
\[
2\sqrt{\sin^2x - 2\sin x + 5} \cdot \frac{1}{4^{\sin^2 y}} \leq 1
\]
Let \( \sin x = s \), \( \sin y = t \). Then:
\[
2\sqrt{s^2 - 2s + 5} \cdot \frac{1}{4^{t^2}} \leq 1
\Rightarrow \sqrt{(s - 1)^2 + 4} \leq \frac{1}{2^{2t^2 - 1}}
\]
Now, test equality. Try \( s = 1 \Rightarrow \sqrt{4} = 2 \), so:
\[
2 \cdot 2 \cdot \frac{1}{4^{t^2}} = \frac{4}{4^{t^2}} \leq 1 \Rightarrow 4^{1 - t^2} \leq 1 \Rightarrow 1 - t^2 \leq 0 \Rightarrow t^2 \geq 1
\Rightarrow t = \pm 1 \Rightarrow \sin y = \pm 1
\]
So \( \sin x = |\sin y| \). This holds generally over the domain under the constraint.