Activation energy of any chemical reaction can be calculated if one knows the value of:
The Arrhenius equation relates the rate constant (k) of a chemical reaction to the temperature (T) and the activation energy (Ea):
$$ k = A e^{-E_a/RT} $$
Where:
If you have the rate constant at two different temperatures (\( k_1 \) at \( T_1 \) and \( k_2 \) at \( T_2 \)), you can use a modified form of the Arrhenius equation to calculate the activation energy:
$$ \ln\left(\frac{k_2}{k_1}\right) = -\frac{E_a}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right) $$
By rearranging this equation, you can solve for \( E_a \):
$$ E_a = -R \frac{\ln\left(\frac{k_2}{k_1}\right)}{\left(\frac{1}{T_2} - \frac{1}{T_1}\right)} $$
Therefore, knowing the rate constant at two different temperatures is necessary to calculate the activation energy.
In Carius method for estimation of halogens, 180 mg of an organic compound produced 143.5 mg of AgCl. The percentage composition of chlorine in the compound is ___________%. [Given: Molar mass in g mol\(^{-1}\) of Ag = 108, Cl = 35.5]
Consider the following reaction occurring in the blast furnace. \[ {Fe}_3{O}_4(s) + 4{CO}(g) \rightarrow 3{Fe}(l) + 4{CO}_2(g) \] ‘x’ kg of iron is produced when \(2.32 \times 10^3\) kg \(Fe_3O_4\) and \(2.8 \times 10^2 \) kg CO are brought together in the furnace.
The value of ‘x’ is __________ (nearest integer).
