The Coriolis acceleration is given by the formula:
\[
a_C = 2 \cdot \Omega \cdot v \cdot \sin(\phi)
\]
where:
- \( \Omega = 7.3 \times 10^{-5} \, {s}^{-1} \) is the angular velocity of the Earth,
- \( v = 0.35 \, {m/s} \) is the speed of the water parcel,
- \( \phi = 20^\circ \) is the latitude of location P.
Substitute these values into the formula:
\[
a_C = 2 \times 7.3 \times 10^{-5} \times 0.35 \times \sin(20^\circ)
\]
Using \( \sin(20^\circ) \approx 0.342 \), we get:
\[
a_C = 2 \times 7.3 \times 10^{-5} \times 0.35 \times 0.342 = 1.74 \times 10^{-5} \, {m/s}^2
\]
Thus, the Coriolis acceleration is 1.72 to 1.78 \(\times 10^{-5}\) m/s\(^2\).