Abdul, Bikram and Chetan are three professional traders who trade in shares of a company XYZ Ltd. Abdul
follows the strategy of buying at the opening of the day at 10 am and selling the whole lot at the close of the day at 3 pm. Bikram follows the strategy of buying at hourly intervals: 10 am, 11 am, 12 noon, 1 pm, and 2 pm, and selling the whole lot at the close of the day. Further, he buys an equal number of shares in each purchase. Chetan follows a similar pattern as Bikram but his strategy is somewhat different. Chetan’s total investment amount is divided equally among his purchases. The profit or loss made by each investor is the difference between the sale value at the close of the day less the investment in purchase. The “return” for each investor is defined as the ratio of the profit or loss to the investment amount expressed as a percent age.

Two players \( A \) and \( B \) are playing a game. Player \( A \) has two available actions \( a_1 \) and \( a_2 \). Player \( B \) has two available actions \( b_1 \) and \( b_2 \). The payoff matrix arising from their actions is presented below:

Let \( p \) be the probability that player \( A \) plays action \( a_1 \) in the mixed strategy Nash equilibrium of the game.
Then the value of p is (round off to one decimal place).
Three friends, P, Q, and R, are solving a puzzle with statements:
(i) If P is a knight, Q is a knave.
(ii) If Q is a knight, R is a spy.
(iii) If R is a knight, P is a knave. Knights always tell the truth, knaves always lie, and spies sometimes tell the truth. If each friend is either a knight, knave, or spy, who is the knight?
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: