ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Fig). Show that F is the mid-point of BC.

Let EF intersect DB at G.

By converse of mid-point theorem, we know that a line drawn through the mid-point of any side of a triangle and parallel to another side, bisects the third side.
In ∆ABD,
EF || AB and E is the mid-point of AD.
Therefore, G will be the mid-point of DB.
As EF || AB and AB || CD,
∠EF || CD (Two lines parallel to the same line are parallel to each other)
In ∆BCD, GF || CD and G is the mid-point of line BD.
Therefore, by using converse of mid-point theorem, F is the mid-point of BC.

Section | Number of girls per thousand boys |
|---|---|
Scheduled Caste (SC) | 940 |
Scheduled Tribe (ST) | 970 |
Non-SC/ST | 920 |
Backward districts | 950 |
Non-backward districts | 920 |
Rural | 930 |
Urban | 910 |
(i) Represent the information above by a bar graph.
(ii) In the classroom discuss what conclusions can be arrived at from the graph.
