ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.20). AC is a diagonal. Show that :
(i) SR || AC and SR = \(\frac{1}{2}\) AC
(ii) PQ = SR
(iii) PQRS is a parallelogram.
(i) In ∆ADC, S and R are the mid-points of sides AD and CD respectively.
In a triangle, the line segment joining the mid-points of any two sides of the triangle is parallel to the third side and is half of it.
∠SR || AC and SR \(\frac{1}{2}\)= AC ... (1)
(ii) In ∆ABC, P and Q are mid-points of sides AB and BC respectively.
Therefore, by using mid-point theorem,
PQ || AC and PQ = \(\frac{1}{2}\) AC ... (2)
Using equations (1) and (2), we obtain
PQ || SR and PQ = SR ... (3)
∠PQ = SR
(iii) From equation (3), we obtained
PQ || SR and PQ = SR
Clearly, one pair of opposite sides of quadrilateral PQRS is parallel and equal.
Hence, PQRS is a parallelogram.
Use these adverbs to fill in the blanks in the sentences below.
awfully sorrowfully completely loftily carefully differently quickly nonchalantly
(i) The report must be read ________ so that performance can be improved.
(ii) At the interview, Sameer answered our questions _________, shrugging his shoulders.
(iii) We all behave _________ when we are tired or hungry.
(iv) The teacher shook her head ________ when Ravi lied to her.
(v) I ________ forgot about it.
(vi) When I complimented Revathi on her success, she just smiled ________ and turned away.
(vii) The President of the Company is ________ busy and will not be able to meet you.
(viii) I finished my work ________ so that I could go out to play