AB $\perp$ BC, BD $\perp$ AC and CE bisects $\angle C$, $\angle A = 30^\circ$. Then what is $\angle CED$?
Step 1: Understanding the diagram In $\triangle ABC$, AB $\perp$ BC and $\angle A = 30^\circ$. So $\triangle ABC$ is right-angled at (b)
Step 2: Finding $\angle C$ Sum of angles in $\triangle ABC$: $\angle C = 180^\circ - 90^\circ - 30^\circ = 60^\circ$.
Step 3: Role of CE bisector CE is the angle bisector of $\angle C$, so $\angle ECD = \angle ECA = 30^\circ$.
Step 4: $\triangle CED$ analysis In right triangle $\triangle CED$, using geometry properties (and symmetry from perpendicular BD), $\angle CED$ = $60^\circ$.
