Write the cell reaction and calculate the e.m.f. of the following cell at 298 K: \[ \text{Sn}(s) \mid \text{Sn}^{2+} (\text{0.004 M}) \parallel \text{H}^+ (\text{0.02 M}) \mid \text{H}_2 (\text{1 Bar}) \mid \text{Pt}(s) \] (Given: \( E^\circ_{\text{Sn}^{2+}/\text{Sn}} = -0.14 \, \text{V}, E^\circ_{\text{H}^+/\text{H}_2} = 0.00 \, \text{V} \))
The cell reaction is written as: \[ \text{Sn}(s) \mid \text{Sn}^{2+} (\text{0.004 M}) \parallel \text{H}^+ (\text{0.02 M}) \mid \text{H}_2 (\text{1 Bar}) \mid \text{Pt}(s) \] The cell potential \(E_{\text{cell}}\) can be calculated using the Nernst equation: \[ E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.0591}{n} \log \frac{[\text{products}]}{[\text{reactants}]} \] Where: - \(E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}}\), - \(E^\circ_{\text{cathode}} = E^\circ_{\text{H}^+/\text{H}_2} = 0.00 \, \text{V}\), - \(E^\circ_{\text{anode}} = E^\circ_{\text{Sn}^{2+}/\text{Sn}} = -0.14 \, \text{V}\), - \(n = 2\) (since the reaction involves the transfer of 2 electrons). Now, calculate the cell potential: \[ E_{\text{cell}} = 0.00 - (-0.14) - \frac{0.0591}{2} \log \frac{[\text{H}^+]^2}{[\text{Sn}^{2+}]} \] Substitute the given concentrations: \[ E_{\text{cell}} = 0.14 - \frac{0.0591}{2} \log \frac{(0.02)^2}{0.004} \] Simplifying the logarithmic term: \[ E_{\text{cell}} = 0.14 - \frac{0.0591}{2} \log \frac{0.0004}{0.004} \] \[ E_{\text{cell}} = 0.14 - \frac{0.0591}{2} \log 0.1 \] Since \(\log 0.1 = -1\): \[ E_{\text{cell}} = 0.14 - \frac{0.0591}{2} (-1) \] \[ E_{\text{cell}} = 0.14 + 0.02955 \] \[ E_{\text{cell}} = 0.16955 \, \text{V} \] Thus, the e.m.f. of the cell is 0.170 V.
"___ how little changes in the environment can have big repercussions" Tishani Doshi in Journey to the End of the Earth gives an awakening call for man. Analyse the theme of the lesson in the light of the above statement.