Question:

A wire of length $ L $ and area of cross-section $ A $ is stretched through a distance $ x $ metre by applying a force $ F $ along length, then the work done in this process is: (Y is Youngs modulus of the material)

Updated On: Jun 7, 2024
  • $ \frac{1}{2}(A.L)\left( \frac{Yx}{L} \right)\left( \frac{x}{L} \right) $
  • $ (A.L)(YL)\left( \frac{x}{L} \right) $
  • $ 2(A.L)(YL)\left( \frac{x}{L} \right) $
  • $ 3(A.L)(YL)\left( \frac{x}{L} \right) $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Work done $ =\frac{1}{2}\times $ stress $ \times $ strain $ \times $ volume
or $ W=\frac{1}{2}Y\frac{x}{L}\times \frac{x}{L}\times AL $
$ =\frac{1}{2}(AL)\,\left( Y\frac{x}{L} \right)\,\left( \frac{x}{L} \right) $
Was this answer helpful?
1
0