A wire of length $20 m$ is to be cut into two pieces A piece of length $l_1$ is bent to make a square of area $A_1$ and the other piece of length $l_2$ is made into a circle of area $A_2$ If $2 A_1+3 A_2$ is minimum then $\left(\pi l_1\right): l_2$ is equal to:
Let the total length of the wire be distributed between a square and a circle, such that:
We are required to minimize the expression:
Where:
Since the perimeter of the square is ℓ₁, each side of the square is ℓ₁ / 4, so:
Similarly, the circumference of the circle is ℓ₂, and the radius is:
Thus the area of the circle becomes:
Substitute the expressions for A₁ and A₂ into the objective function:
Now we express the function S in terms of a single variable using the constraint ℓ₁ + ℓ₂ = 20:
Substitute into S:
Differentiate S with respect to ℓ₁ and set the derivative to zero to minimize:
Set derivative to zero:
Multiply both sides by 4π to eliminate denominators:
Expanding and simplifying:
Then:
Now compute the ratio ℓ₁ : ℓ₂:
To minimize the combined weighted area of the square and the circle, the wire should be divided in the ratio:
Let \( a_1, a_2, a_3, \ldots \) be in an A.P. such that \[ \sum_{k=1}^{12} a_{2k-1} = -\frac{72}{5} a_1, \quad a_1 \neq 0. \] If \[ \sum_{k=1}^{n} a_k = 0, \] then \( n \) is:
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is:
If some other quantity ‘y’ causes some change in a quantity of surely ‘x’, in view of the fact that an equation of the form y = f(x) gets consistently pleased, i.e, ‘y’ is a function of ‘x’ then the rate of change of ‘y’ related to ‘x’ is to be given by
\(\frac{\triangle y}{\triangle x}=\frac{y_2-y_1}{x_2-x_1}\)
This is also known to be as the Average Rate of Change.
Consider y = f(x) be a differentiable function (whose derivative exists at all points in the domain) in an interval x = (a,b).
Read More: Application of Derivatives