In the vertical direction:
\[2T \sin \theta = 20\]
Using the small angle approximation \( \sin \theta \approx \theta \):
\[\theta = \frac{1}{100} \implies T = \frac{10}{\theta} = 1000 \, \text{N}\]
The change in length \( \Delta L \) is given by:
\[\Delta L = 2\sqrt{x^2 + L^2} - 2L\]
\[\Delta L \approx 2L \left( \frac{x^2}{2L^2} \right) = \frac{x^2}{L}\]
Modulus of elasticity \( E \) is defined as:
\[E = \frac{\text{stress}}{\text{strain}}\]
Substitute \( E = 2 \times 10^{11} \, \text{Nm}^{-2} \):
\[2 \times 10^{11} = \frac{10^3}{A} \times \frac{x^2}{L} \times 2L\]
Solve for \( A \):
\[A = 1 \times 10^{-4} \, \text{m}^2\]
If the given graph shows the load (W) attached to and the elongation ($\Delta l$) produced in a wire of length 1 meter and cross-sectional area 1 mm$^2$, then the Young's modulus of the material of the wire is
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: