In the vertical direction:
\[2T \sin \theta = 20\]
Using the small angle approximation \( \sin \theta \approx \theta \):
\[\theta = \frac{1}{100} \implies T = \frac{10}{\theta} = 1000 \, \text{N}\]
The change in length \( \Delta L \) is given by:
\[\Delta L = 2\sqrt{x^2 + L^2} - 2L\]
\[\Delta L \approx 2L \left( \frac{x^2}{2L^2} \right) = \frac{x^2}{L}\]
Modulus of elasticity \( E \) is defined as:
\[E = \frac{\text{stress}}{\text{strain}}\]
Substitute \( E = 2 \times 10^{11} \, \text{Nm}^{-2} \):
\[2 \times 10^{11} = \frac{10^3}{A} \times \frac{x^2}{L} \times 2L\]
Solve for \( A \):
\[A = 1 \times 10^{-4} \, \text{m}^2\]
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32