In the vertical direction:
\[2T \sin \theta = 20\]
Using the small angle approximation \( \sin \theta \approx \theta \):
\[\theta = \frac{1}{100} \implies T = \frac{10}{\theta} = 1000 \, \text{N}\]
The change in length \( \Delta L \) is given by:
\[\Delta L = 2\sqrt{x^2 + L^2} - 2L\]
\[\Delta L \approx 2L \left( \frac{x^2}{2L^2} \right) = \frac{x^2}{L}\]
Modulus of elasticity \( E \) is defined as:
\[E = \frac{\text{stress}}{\text{strain}}\]
Substitute \( E = 2 \times 10^{11} \, \text{Nm}^{-2} \):
\[2 \times 10^{11} = \frac{10^3}{A} \times \frac{x^2}{L} \times 2L\]
Solve for \( A \):
\[A = 1 \times 10^{-4} \, \text{m}^2\]
If the given graph shows the load (W) attached to and the elongation ($\Delta l$) produced in a wire of length 1 meter and cross-sectional area 1 mm$^2$, then the Young's modulus of the material of the wire is
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).