In the vertical direction:
\[2T \sin \theta = 20\]
Using the small angle approximation \( \sin \theta \approx \theta \):
\[\theta = \frac{1}{100} \implies T = \frac{10}{\theta} = 1000 \, \text{N}\]
The change in length \( \Delta L \) is given by:
\[\Delta L = 2\sqrt{x^2 + L^2} - 2L\]
\[\Delta L \approx 2L \left( \frac{x^2}{2L^2} \right) = \frac{x^2}{L}\]
Modulus of elasticity \( E \) is defined as:
\[E = \frac{\text{stress}}{\text{strain}}\]
Substitute \( E = 2 \times 10^{11} \, \text{Nm}^{-2} \):
\[2 \times 10^{11} = \frac{10^3}{A} \times \frac{x^2}{L} \times 2L\]
Solve for \( A \):
\[A = 1 \times 10^{-4} \, \text{m}^2\]
If the given graph shows the load (W) attached to and the elongation ($\Delta l$) produced in a wire of length 1 meter and cross-sectional area 1 mm$^2$, then the Young's modulus of the material of the wire is
Choose the correct set of reagents for the following conversion:
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):