\( 10^{9} \, Nm^{-2} \)
The Young's modulus (\( Y \)) is given by the formula: \[ Y = \frac{\text{Stress}}{\text{Strain}} \]
Step 1: Calculate Stress
Stress is defined as force per unit area: \[ \text{Stress} = \frac{F}{A} \] Given: \[ F = 1000 \, N, \quad A = 10^{-6} \, m^2 \] \[ \text{Stress} = \frac{1000}{10^{-6}} \] \[ = 10^9 \, Nm^{-2} \]
Step 2: Calculate Strain
Strain is given as the ratio of change in length to the original length: \[ \text{Strain} = \frac{\Delta L}{L} \] Given \( \frac{\Delta L}{L} = 0.1\% = \frac{0.1}{100} = 10^{-3} \),
Step 3: Compute Young's modulus
\[ Y = \frac{10^9}{10^{-3}} \] \[ = 10^{12} \, Nm^{-2} \] Thus, the Young's modulus of the material is \( 10^{12} \, Nm^{-2} \).
Match the following: