First, find each tap’s filling rate in buckets per minute:
Tap A: 4 buckets in 24 minutes $\Rightarrow$ $\frac{4}{24} = \frac{1}{6}$ bucket/min.
Tap B: 8 buckets in 60 minutes $\Rightarrow$ $\frac{8}{60} = \frac{2}{15}$ bucket/min.
Tap C: 2 buckets in 20 minutes $\Rightarrow$ $\frac{2}{20} = \frac{1}{10}$ bucket/min.
Together, their combined rate = $\frac{1}{6} + \frac{2}{15} + \frac{1}{10}$.
Find LCM of 6, 15, 10 = 30. Convert: $\frac{5}{30} + \frac{4}{30} + \frac{3}{30} = \frac{12}{30} = \frac{2}{5}$ bucket/min.
If all taps are opened together, in 2 hours (120 minutes), total buckets filled = $120 \times \frac{2}{5} = 48$ buckets.
If each bucket holds 5 litres, total capacity = $48 \times 5 = 240$ litres.
Thus, the capacity of the tank is $\boxed{240 \ \text{litres}}$.