Let original quantity of solution be \( x \) litres.
Initial ratio: Milk : Water = 4:1 → Milk = \( \frac{4x}{5} \), Water = \( \frac{x}{5} \)
Let \( w \) litres of water be added. New total = \( x + w \)
Milk stays same \( = \frac{4x}{5} \), Water becomes \( \frac{x}{5} + w \)
New ratio = 4:3, so:
\[
\frac{4x}{5} : \left(\frac{x}{5} + w\right) = 4:3
\Rightarrow \frac{4x}{5} = \frac{4}{7}(x + w)
\]
Cross-multiplied:
\[
\frac{4x}{5} = \frac{4(x + w)}{7}
\Rightarrow \frac{x}{5} = \frac{x + w}{7}
\Rightarrow 7x = 5x + 5w \Rightarrow 2x = 5w \Rightarrow x = \frac{5w}{2}
\]
So total solution = \( x + w = \frac{5w}{2} + w = \frac{7w}{2} \)
Milk = \( \frac{4x}{5} = \frac{4 \cdot \frac{5w}{2}}{5} = 2w \),
Water = \( \text{total} - \text{milk} = \frac{7w}{2} - 2w = \frac{3w}{2} \)
Now 14 L of solution is replaced with pure milk.
So 14 L is removed in the current ratio 4:3 i.e.:
\[
\text{Milk removed} = \frac{4}{7} \cdot 14 = 8 \text{ L}, \quad \text{Water removed} = \frac{3}{7} \cdot 14 = 6 \text{ L}
\]
Then, 14 L of pure milk is added:
\[
\text{New milk} = 2w - 8 + 14 = 2w + 6
\text{New water} = \frac{3w}{2} - 6
\]
Given new ratio = 5:3:
\[
\frac{2w + 6}{\frac{3w}{2} - 6} = \frac{5}{3}
\Rightarrow 3(2w + 6) = 5\left(\frac{3w}{2} - 6\right)
\Rightarrow 6w + 18 = \frac{15w}{2} - 30
\]
Multiply all terms by 2:
\[
12w + 36 = 15w - 60 \Rightarrow 96 = 3w \Rightarrow w = \boxed{32}
\]
\[
\boxed{\text{Water added} = 32 \text{ litres}}
\]