Step 1: Critical depth for a very wide rectangular channel.
For unit width, critical depth is
\[
y_c=\left(\frac{q^2}{g}\right)^{1/3}, q=Q=70~\mathrm{m^2/s}.
\]
\[
y_c=\left(\frac{70^2}{9.81}\right)^{1/3}\approx 7.93~\mathrm{m}.
\]
Step 2: Normal depth on each reach (Manning, very wide).
For a very wide rectangle, $A=y$, $R\approx y$, and
\[
q=\frac{1}{n}\,y^{5/3}\,S_0^{1/2}\;\Rightarrow\;
y_n=\left(q\,n\,S_0^{-1/2}\right)^{3/5}.
\]
Upstream ( $S_0=0.0001$ ):
\[
y_{n1}=\left(\frac{70\cdot 0.01}{\sqrt{0.0001}}\right)^{3/5}\approx 12.80~\mathrm{m}.
\]
Downstream ( $S_0=0.0009$ ):
\[
y_{n2}=\left(\frac{70\cdot 0.01}{\sqrt{0.0009}}\right)^{3/5}\approx 6.62~\mathrm{m}.
\]
Step 3: Classify slopes.
- Upstream: $y_{n1}>y_c$ $\Rightarrow$ mild slope (M).
- Downstream: $y_{n2}<y_c$ $\Rightarrow$ steep slope (S).
Step 4: Profiles near $P$.
Approaching the steeper reach, depth must decrease from $y_{n1}$ toward the control; on a mild slope such a drawdown with $y_c<y<y_n$ is profile M$_2$.
Immediately downstream on the steep slope, the flow adjusts from near-critical toward $y_{n2}(<y_c)$; the curve with $y_n<y<y_c$ is profile S$_2$.
\[
\boxed{\text{Profiles near }P:\; \text{M}_2 \text{ (upstream)} \;\text{and}\; \text{S}_2 \text{ (downstream).}}
\]
The figures, I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence as IV?
For the beam and loading shown in the figure, the second derivative of the deflection curve of the beam at the mid-point of AC is given by \( \frac{\alpha M_0}{8EI} \). The value of \( \alpha \) is ........ (rounded off to the nearest integer).