Since vector \( \vec{a} \) makes equal acute angles with the coordinate axes, we can conclude that its direction ratios are all equal. Thus, we assume that: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] The projection of vector \( \vec{b} \) on \( \vec{a} \) is given by the formula: \[ \text{Projection of } \vec{b} \text{ on } \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \] First, we calculate the dot product \( \vec{a} \cdot \vec{b} \): \[ \vec{a} \cdot \vec{b} = (1)(5) + (1)(7) + (1)(-1) = 5 + 7 - 1 = 11 \] Next, we calculate the magnitude of \( \vec{a} \): \[ |\vec{a}| = \sqrt{(1^2 + 1^2 + 1^2)} = \sqrt{3} \] Now, we can find the projection: \[ \text{Projection of } \vec{b} \text{ on } \vec{a} = \frac{11}{\sqrt{3}} \] Thus, the projection of \( \vec{b} \) on \( \vec{a} \) is \( \frac{11}{\sqrt{3}} \).
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |