Fuel consumption rate: 1 metric ton per 0.5 AU
Total distance: 1.5 AU
Total fuel consumption:
\(\frac{1 \text{ metric ton}}{0.5 \text{ AU}} = \frac{X \text{ metric tons}}{1.5 \text{ AU}}\)
\(X = \left( \frac{1 \text{ metric ton}}{0.5 \text{ AU}} \right) \times 1.5 \text{ AU} = 3 \text{ metric tons}\)
Total distance the spacecraft can travel with a full tank:
Fuel capacity: 100 metric tons
Consumption rate: 1 metric ton per 0.5 AU
\(\text{Total distance} = \text{Fuel capacity} \times \text{Distance per metric ton}\)
\(\text{Total distance} = 100 \text{ metric tons} \times \frac{0.5 \text{ AU}}{\text{metric ton}} = 50 \text{ AU}\)
Number of waystations:
Distance between waystations on the outer route: 3 AU
\(\text{Number of waystations} = \frac{\text{Total distance}}{\text{Distance between waystations}}\)
\(\text{Number of waystations} = \frac{50 \text{ AU}}{3 \text{ AU/waystation}} \approx 16.67 \text{ waystations}\)
Since a spacecraft can't traverse a fraction of a waystation, round down to the nearest whole number. So answer is 16
New distance between waystations on the inner route.
Original distance: 1.5 AU
Reduction: 20%
New distance: \(1.5 \text{ AU} \times (1 - 0.2) = 1.2 \text{ AU}\)
New fuel consumption rate for the new spacecraft.
Standard fuel consumption rate: 1 metric ton per 0.5 AU
New spacecraft fuel efficiency: 1.2 times the standard
New fuel consumption rate: \(\frac{1 \text{ metric ton}}{0.5 \text{ AU} \times 1.2} = \frac{1}{0.6} \text{ metric ton per AU} = \frac{5}{3} \text{ metric tons per AU}\)
Number of waystations for both spacecraft.
Standard spacecraft:
Fuel capacity: 100 metric tons
Fuel consumption rate: 1 metric ton per 0.5 AU or 2 metric tons per AU
\(\text{Number of waystations} = \frac{\left(\frac{\text{Fuel capacity}}{\text{Fuel consumption rate}}\right)}{\text{Distance per waystation}}\)
\(\text{Number of waystations} = \frac{\left(\frac{100 \text{ metric tons}}{2 \text{ metric tons/AU}}\right)}{1.5 \text{ AU}}\)
\(\text{Number of waystations} = \frac{50}{1.5} = 33.33 \text{ waystations (rounded down to 33 waystations)}\)
New spacecraft:
Fuel capacity: 100 metric tons
\(\text{Fuel consumption rate} = \frac{5}{3} \text{ metric tons per AU}\)
\(\text{Number of waystations} = \frac{\left( \frac{\text{Fuel capacity}}{\text{Fuel consumption rate}} \right)}{\text{Distance per waystation}}\)
\(\text{Number of waystations} = \frac{\left( \frac{100 \text{ metric tons}}{\frac{5}{3} \text{ metric tons/AU}} \right)}{1.2 \text{ AU}} = 60 \text{ waystations}\)
Percentage increase.
\(\text{Percentage increase} = \left( \frac{\left( \text{New number of waystations} - \text{Old number of waystations} \right)}{\text{Old number of waystations}} \right) \times 100 = \left( \frac{60 - 33}{33} \right) \times 100 = \left( \frac{27}{33} \right) \times 100 \approx 81.82\%\)
Total distance in kilometers:
Distance in AU: 30 AU
Conversion factor: 1 AU = 150 million km
\(\text{Total distance} = 30 \text{ AU} \times 150 \text{ million km/AU} = 4.5 \text{ billion km}\)
Travel time:
Distance: 4.5 billion km
Speed: 50,000 km/h
\(\text{Time} = \frac{\text{Distance}}{\text{Speed}} = \frac{4.5 \text{ billion km}}{50,000 \text{ km/h}} = 90,000 \text{ hours}\)
Assuming
Original fuel price: P
Original distance between waystations: D
Original number of waystations between Jupiter and Neptune: N
Original total fuel cost:
Fuel consumption is directly proportional to distance.
\(\text{Total fuel cost} = P \times N \times D\)
New situation:
New fuel price: 1.2P (20% increase)
New distance between waystations: 1.1D (10% increase)
Number of waystations will decrease as the distance between them increases, but for simplicity, let's assume it remains N (this assumption might slightly overestimate the cost increase).
New total fuel cost:
\(\text{New total fuel cost} = 1.2P \times N \times 1.1D = 1.32 \times (P \times N \times D)\)
Percentage increase in total fuel cost:
=\(\left( \frac{\left( \text{New total fuel cost} - \text{Original total fuel cost} \right)}{\text{Original total fuel cost}} \right) \times 100\)
\(=\left( \frac{1.32 \times P \times N \times D - P \times N \times D}{P \times N \times D} \right) \times 100 \\= \left( \frac{(1.32 - 1) \times P \times N \times D}{P \times N \times D} \right) \times 100 = \left( \frac{0.32 \times P \times N \times D}{P \times N \times D} \right) \times 100 = 0.32 \times 100 = 32\%\)