In the question it is given that, \(BC = 10\ m\)
and \(∠ACB = 90^0\)
We have to find \(AB\ and\ AC\)
In the right angled triangle =\(ABC\)
\(tan(30^0) = \frac{AB}{BC}\)
\(\frac{1}{\sqrt{3}} = \frac{AB}{10}\)
\(AB = \frac{10}{\sqrt{3}}\) – (i)
\(cos(30^0) = \frac{BC}{AC}\)
\(\frac{\sqrt{3}}{2} = \frac{10}{AC}\)
\(AC = \frac{20}{\sqrt{3}}\) – (ii)
The Height of the tree = \(AB + AC\)
= \(\frac{10}{\sqrt{3}}+ \frac{20}{\sqrt{3}}\)
= \(\frac{30}{\sqrt{3}}\) = \(10\sqrt{3}\ m\)
The correct option is (B): 10√(3) m