Mass of the ring M = $\tau$L. Let R be the radius of the ring, then
L = 2n R or R = $\frac{L}{2 \pi }$
Moment of inertia about an axis passing through O and parallel to XX 'will be
$ \, \, \, \, \, \, \, \, \, \, \, I_0 = \frac{1}{2} MR^2$
Therefore, moment of inertia about XX' (from parallel axis theorem) will be given by
$ \, \, \, I_{XX ' } = \frac{ 1}{2} MR^2 +MR^2 = \frac{3}{2} MR^2$
Substituting values of M and R
$ \, \, \, \, \, I_ { XX ' } = \frac{ 3}{2} (\tau L) \bigg( \frac{ L^2}{{\pi}^2} \bigg) = \frac{ 3 \tau L^3}{ 8 {\pi}^2}$