A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is :
A, B and C are disc, solid sphere and spherical shell respectively with the same radii and masses. These masses are placed as shown in the figure.
The moment of inertia of the given system about PQ is $ \frac{x}{15} I $, where $ I $ is the moment of inertia of the disc about its diameter. The value of $ x $ is:
Observe the following data given in the table. (\(K_H\) = Henry's law constant)
Gas | CO₂ | Ar | HCHO | CH₄ |
---|---|---|---|---|
\(K_H\) (k bar at 298 K) | 1.67 | 40.3 | \(1.83 \times 10^{-5}\) | 0.413 |
The correct order of their solubility in water is
For a first order decomposition of a certain reaction, rate constant is given by the equation
\(\log k(s⁻¹) = 7.14 - \frac{1 \times 10^4 K}{T}\). The activation energy of the reaction (in kJ mol⁻¹) is (\(R = 8.3 J K⁻¹ mol⁻¹\))
Note: The provided value for R is 8.3. We will use the more precise value R=8.314 J K⁻¹ mol⁻¹ for accuracy, as is standard.