
Step 1: Define Angular Impulse \( I_A \)
\[ I_A = \text{angular impulse} = \vec{p} \times \vec{r} = \rho \left( \frac{l}{2} + x \right) \]
Step 2: Express Linear Impulse \( I \)
\[ I = \Delta p \]
Since \( p = mv - 0 \), we get:
\[ p = mv \]
Step 3: Write the Expression for \( I_A \)
\[ I_A = mv \times \left( \frac{3l}{2} + x \right) \]
Step 4: Define Angular Momentum \( L \)
\[ L = \text{angular momentum} = I_0 \omega + mv \times r \]
Substituting values:
\[ L = \frac{ml^2}{12} \omega + mv \times \frac{3l}{2} \]
Step 5: Relate Angular Impulse to Change in Angular Momentum
\[ mv \left( \frac{3l}{2} + x \right) = \frac{ml^2}{12} \omega + mv \frac{3l}{2} \]
Step 6: Solve for \( v \)
\[ mvx = \frac{ml^2}{12} \omega \]
Solving for \( v \):
\[ v = \frac{3l\omega}{2} \]
Step 7: Solve for \( x \)
\[ m\omega \cdot \frac{3l}{2} x = \frac{ml^2}{12} \times \omega \]
Solving for \( x \):
\[ x = \frac{l}{18} = \frac{l}{n} \]
Final Answer:
\( n = 18 \)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?