\[ I_A = \text{angular impulse} = \vec{p} \times \vec{r} = \rho \left( \frac{l}{2} + x \right) \]
\[ I = \Delta p \]
Since \( p = mv - 0 \), we get:
\[ p = mv \]
\[ I_A = mv \times \left( \frac{3l}{2} + x \right) \]
\[ L = \text{angular momentum} = I_0 \omega + mv \times r \]
Substituting values:
\[ L = \frac{ml^2}{12} \omega + mv \times \frac{3l}{2} \]
\[ mv \left( \frac{3l}{2} + x \right) = \frac{ml^2}{12} \omega + mv \frac{3l}{2} \]
\[ mvx = \frac{ml^2}{12} \omega \]
Solving for \( v \):
\[ v = \frac{3l\omega}{2} \]
\[ m\omega \cdot \frac{3l}{2} x = \frac{ml^2}{12} \times \omega \]
Solving for \( x \):
\[ x = \frac{l}{18} = \frac{l}{n} \]
\( n = 18 \)