Step 1: Define Angular Impulse \( I_A \)
\[ I_A = \text{angular impulse} = \vec{p} \times \vec{r} = \rho \left( \frac{l}{2} + x \right) \]
Step 2: Express Linear Impulse \( I \)
\[ I = \Delta p \]
Since \( p = mv - 0 \), we get:
\[ p = mv \]
Step 3: Write the Expression for \( I_A \)
\[ I_A = mv \times \left( \frac{3l}{2} + x \right) \]
Step 4: Define Angular Momentum \( L \)
\[ L = \text{angular momentum} = I_0 \omega + mv \times r \]
Substituting values:
\[ L = \frac{ml^2}{12} \omega + mv \times \frac{3l}{2} \]
Step 5: Relate Angular Impulse to Change in Angular Momentum
\[ mv \left( \frac{3l}{2} + x \right) = \frac{ml^2}{12} \omega + mv \frac{3l}{2} \]
Step 6: Solve for \( v \)
\[ mvx = \frac{ml^2}{12} \omega \]
Solving for \( v \):
\[ v = \frac{3l\omega}{2} \]
Step 7: Solve for \( x \)
\[ m\omega \cdot \frac{3l}{2} x = \frac{ml^2}{12} \times \omega \]
Solving for \( x \):
\[ x = \frac{l}{18} = \frac{l}{n} \]
Final Answer:
\( n = 18 \)
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: