For a uniform rectangular sheet shown in the figure, the ratio of moments of inertia about the axes perpendicular to the sheet and passing through \( O \) (the center of mass) and \( O' \) (corner point) is:
A particle is moving in a straight line. The variation of position $ x $ as a function of time $ t $ is given as:
$ x = t^3 - 6t^2 + 20t + 15 $.
The velocity of the body when its acceleration becomes zero is:
Evaluate the following limit: $ \lim_{n \to \infty} \prod_{r=3}^n \frac{r^3 - 8}{r^3 + 8} $.
In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be:
Moment of inertia is defined as the quantity expressed by the body resisting angular acceleration which is the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.
In general form, the moment of inertia can be expressed as,
I = m × r²
Where,
I = Moment of inertia.
m = sum of the product of the mass.
r = distance from the axis of the rotation.
M¹ L² T° is the dimensional formula of the moment of inertia.
The equation for moment of inertia is given by,
I = I = ∑mi ri²
To calculate the moment of inertia, we use two important theorems-