1.33
1.6
1.25
1.45
1.4
\[ \frac{1}{f} = (n_{\text{lens}} - n_{\text{medium}}) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \]
where:
- \( f \) is the focal length of the lens,
- \( n_{\text{lens}} \) is the refractive index of the lens material,
- \( n_{\text{medium}} \) is the refractive index of the surrounding medium,
- \( R_1 \) and \( R_2 \) are the radii of curvature of the lens surfaces.
Given:
- \( n_{\text{lens}} = 1.5 \),
- \( f_{\text{air}} = 10 \text{ cm} \),
- \( f_{\text{fluid}} = 70 \text{ cm} \).
First, we find the curvature term using the focal length in air (\( n_{\text{medium}} = 1 \)):
\[ \frac{1}{10} = (1.5 - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \]
\[ \frac{1}{10} = 0.5 \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \]
\[ \frac{1}{R_1} - \frac{1}{R_2} = \frac{1}{10 \times 0.5} = \frac{1}{5} \]
Next, we use the same curvature term with the focal length in the fluid to find the refractive index of the fluid \( n_{\text{fluid}} \):
\[ \frac{1}{70} = (1.5 - n_{\text{fluid}}) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \]
Substitute \( \frac{1}{R_1} - \frac{1}{R_2} = \frac{1}{5} \):
\[ \frac{1}{70} = (1.5 - n_{\text{fluid}}) \times \frac{1}{5} \]
\[ \frac{1}{70} = \frac{1.5 - n_{\text{fluid}}}{5} \]
\[ 5 \times \frac{1}{70} = 1.5 - n_{\text{fluid}} \]
\[ \frac{1}{14} = 1.5 - n_{\text{fluid}} \]
\[ n_{\text{fluid}} = 1.5 - \frac{1}{14} \]
\[ n_{\text{fluid}} = 1.5 - 0.0714 \]
\[ n_{\text{fluid}} = 1.4286 \]
Thus, the refractive index of the fluid is approximately \( 1.42 \).
So The correct answer is Option(E):1.4 nearest matching answer
Step 1: Recall the lens maker's formula.
The focal length of a thin convex lens is given by the lens maker's formula:
\[ \frac{1}{f} = (n - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right), \]
where:
In air, the refractive index of the lens relative to air is \( n_{\text{air}} = \frac{n_{\text{lens}}}{n_{\text{air}}} = 1.5 \), where \( n_{\text{lens}} = 1.5 \) and \( n_{\text{air}} = 1 \).
In the fluid, the refractive index of the lens relative to the fluid is \( n_{\text{fluid}} = \frac{n_{\text{lens}}}{n_{\text{fluid}}} \), where \( n_{\text{fluid}} \) is the refractive index of the fluid.
---
Step 2: Write the lens maker's formula for both cases.
(i) In air:
\[ \frac{1}{f_{\text{air}}} = (n_{\text{air}} - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right). \]
Substitute \( f_{\text{air}} = 10 \, \text{cm} \) and \( n_{\text{air}} = 1.5 \):
\[ \frac{1}{10} = (1.5 - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right). \]
Simplify:
\[ \frac{1}{10} = 0.5 \left( \frac{1}{R_1} - \frac{1}{R_2} \right). \]
\[ \frac{1}{R_1} - \frac{1}{R_2} = \frac{1}{5}. \]
(ii) In the fluid:
\[ \frac{1}{f_{\text{fluid}}} = (n_{\text{fluid}} - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right). \]
Substitute \( f_{\text{fluid}} = 70 \, \text{cm} \) and \( \frac{1}{R_1} - \frac{1}{R_2} = \frac{1}{5} \):
\[ \frac{1}{70} = (n_{\text{fluid}} - 1) \cdot \frac{1}{5}. \]
Simplify:
\[ n_{\text{fluid}} - 1 = \frac{1}{70} \cdot 5 = \frac{5}{70} = \frac{1}{14}. \]
\[ n_{\text{fluid}} = 1 + \frac{1}{14} = \frac{15}{14} \approx 1.07. \] ---
Final Answer: The refractive index of the fluid is approximately \( \mathbf{1.4} \), which corresponds to option \( \mathbf{(E)} \).
If \( 2 \) is a solution of the inequality \( \frac{x-a}{a-2x}<-3 \), then \( a \) must lie in the interval:
Lenses that are made by combining two spherical transparent surfaces are called spherical lenses. In general, there are two kinds of spherical lenses. Lenses that are made by joining two spherical surfaces that bulge outward are convex lenses, whereas lenses that are made by joining two spherical surfaces that curve inward are concave lenses.