A solid glass sphere of refractive index $ n = \sqrt{3} $ and radius $ R $ contains a spherical air cavity of radius $ \dfrac{R}{2} $, as shown in the figure. A very thin glass layer is present at the point $ O $ so that the air cavity (refractive index $ n = 1 $) remains inside the glass sphere. An unpolarized, unidirectional and monochromatic light source $ S $ emits a light ray from a point inside the glass sphere towards the periphery of the glass sphere. If the light is reflected from the point $ O $ and is fully polarized, then the angle of incidence at the inner surface of the glass sphere is $ \theta $. The value of $ \sin \theta $ is ____ 
To find the value of \(\sin \theta\), we need to analyze the optics problem involving a solid glass sphere with a spherical air cavity, as shown in the diagram. Step 1: Understand the setup
Step 2: Identify the Brewster angle condition The Brewster angle occurs when the reflected light is fully polarized, which happens when the angle of incidence satisfies the condition: \[ \tan \theta = \frac{n_{\text{glass}}}{n_{\text{air}}} \] Here:
So, the Brewster angle condition becomes: \[ \tan \theta = \frac{\sqrt{3}}{1} = \sqrt{3} \]
Step 3: Calculate \( \sin \theta \) From the Brewster angle condition, we have: \[ \tan \theta = \sqrt{3} \] We know from trigonometry that \(\tan \theta = \frac{\sin \theta}{\cos \theta}\), and using the identity \(\sin^2 \theta + \cos^2 \theta = 1\), we can find \(\sin \theta\). Since \(\tan \theta = \sqrt{3}\), we can think of a right triangle where:
Thus: \[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\sqrt{3}}{2} \] Alternatively, we can use the identity: \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\sin^2 \theta}{1 - \sin^2 \theta} \] Given \(\tan \theta = \sqrt{3}\), we have: \[ (\sqrt{3})^2 = \frac{\sin^2 \theta}{1 - \sin^2 \theta} \] \[ 3 = \frac{\sin^2 \theta}{1 - \sin^2 \theta} \] Let \( x = \sin^2 \theta \). Then: \[ 3 (1 - x) = x \] \[ 3 - 3x = x \] \[ 3 = 4x \] \[ x = \frac{3}{4} \] \[ \sin^2 \theta = \frac{3}{4} \] \[ \sin \theta = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] Since \(\theta\) is the angle of incidence (between \(0^\circ\) and \(90^\circ\)), \(\sin \theta\) is positive.
Step 4: Final answer The value of \(\sin \theta\) is: \[ \sin \theta = \frac{\sqrt{3}}{2} \]
Final Answer: \( \boxed{\sin \theta = 0.86} \)
A hemispherical vessel is completely filled with a liquid of refractive index \( \mu \). A small coin is kept at the lowest point \( O \) of the vessel as shown in the figure. The minimum value of the refractive index of the liquid so that a person can see the coin from point \( E \) (at the level of the vessel) is:
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.