A solid glass sphere of refractive index $ n = \sqrt{3} $ and radius $ R $ contains a spherical air cavity of radius $ \dfrac{R}{2} $, as shown in the figure. A very thin glass layer is present at the point $ O $ so that the air cavity (refractive index $ n = 1 $) remains inside the glass sphere. An unpolarized, unidirectional and monochromatic light source $ S $ emits a light ray from a point inside the glass sphere towards the periphery of the glass sphere. If the light is reflected from the point $ O $ and is fully polarized, then the angle of incidence at the inner surface of the glass sphere is $ \theta $. The value of $ \sin \theta $ is ____
To find the value of \(\sin \theta\), we need to analyze the optics problem involving a solid glass sphere with a spherical air cavity, as shown in the diagram. Step 1: Understand the setup
Step 2: Identify the Brewster angle condition The Brewster angle occurs when the reflected light is fully polarized, which happens when the angle of incidence satisfies the condition: \[ \tan \theta = \frac{n_{\text{glass}}}{n_{\text{air}}} \] Here:
So, the Brewster angle condition becomes: \[ \tan \theta = \frac{\sqrt{3}}{1} = \sqrt{3} \]
Step 3: Calculate \( \sin \theta \) From the Brewster angle condition, we have: \[ \tan \theta = \sqrt{3} \] We know from trigonometry that \(\tan \theta = \frac{\sin \theta}{\cos \theta}\), and using the identity \(\sin^2 \theta + \cos^2 \theta = 1\), we can find \(\sin \theta\). Since \(\tan \theta = \sqrt{3}\), we can think of a right triangle where:
Thus: \[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\sqrt{3}}{2} \] Alternatively, we can use the identity: \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\sin^2 \theta}{1 - \sin^2 \theta} \] Given \(\tan \theta = \sqrt{3}\), we have: \[ (\sqrt{3})^2 = \frac{\sin^2 \theta}{1 - \sin^2 \theta} \] \[ 3 = \frac{\sin^2 \theta}{1 - \sin^2 \theta} \] Let \( x = \sin^2 \theta \). Then: \[ 3 (1 - x) = x \] \[ 3 - 3x = x \] \[ 3 = 4x \] \[ x = \frac{3}{4} \] \[ \sin^2 \theta = \frac{3}{4} \] \[ \sin \theta = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] Since \(\theta\) is the angle of incidence (between \(0^\circ\) and \(90^\circ\)), \(\sin \theta\) is positive.
Step 4: Final answer The value of \(\sin \theta\) is: \[ \sin \theta = \frac{\sqrt{3}}{2} \]
Final Answer: \( \boxed{\sin \theta = 0.86} \)
A current element X is connected across an AC source of emf \(V = V_0\ sin\ 2πνt\). It is found that the voltage leads the current in phase by \(\frac{π}{ 2}\) radian. If element X was replaced by element Y, the voltage lags behind the current in phase by \(\frac{π}{ 2}\) radian.
(I) Identify elements X and Y by drawing phasor diagrams.
(II) Obtain the condition of resonance when both elements X and Y are connected in series to the source and obtain expression for resonant frequency. What is the impedance value in this case?
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.