Step 1: Thin airfoil theory.
\[
C_l = 2\pi (\alpha - \alpha_{L=0})
\]
where $\alpha_{L=0}$ is zero-lift angle.
Step 2: Convert angles.
Given: $\alpha_{L=0} = -1^\circ = -\frac{\pi}{180} \approx -0.01745 \,\text{rad}$
At $\alpha=4^\circ = \frac{4\pi}{180} = 0.06981 \,\text{rad}$
Step 3: Substitute.
\[
C_l = 2\pi (0.06981 - (-0.01745)) = 2\pi (0.08726)
\]
\[
= 6.283 \times 0.08726 = 0.548 \approx 0.55
\]
\[
\boxed{0.55}
\]
For a NACA 4415 airfoil, the location of maximum camber, as a fraction of the chord length from the leading edge, is _________.