Step 1: Translate the information.
- \(65%\) of users were advised to quit.
- Only \(30%\) (3 out of 10) attempted quitting.
Step 2: Link the groups.
All attempts (30%) must come from the "advised" group (65%), because only those advised can be expected to attempt.
So, among those advised (65%), only 30% attempted.
Step 3: Majority check.
Since 65% were advised but only 30% attempted, the remainder (35%) did not attempt.
Thus, within the advised group, more than half did not attempt quitting.
Step 4: Eliminate wrong options.
(A) Claims majority of advised did attempt — false.
(C) and (D) talk about successfully quitting, but success data is not given — cannot infer.
Only (B) follows with certainty.
Final Answer:
\[
\boxed{\text{(B)}}
\]
A continuous time periodic signal \( x(t) \) is given by: \[ x(t) = 1 + 2\cos(2\pi t) + 2\cos(4\pi t) + 2\cos(6\pi t) \] If \( T \) is the period of \( x(t) \), then evaluate: \[ \frac{1}{T} \int_0^T |x(t)|^2 \, dt \quad {(round off to the nearest integer).} \]
The maximum percentage error in the equivalent resistance of two parallel connected resistors of 100 \( \Omega \) and 900 \( \Omega \), with each having a maximum 5% error, is: \[ {(round off to nearest integer value).} \]
Consider a distribution feeder, with \( R/X \) ratio of 5. At the receiving end, a 350 kVA load is connected. The maximum voltage drop will occur from the sending end to the receiving end, when the power factor of the load is: \[ {(round off to three decimal places).} \]
In the circuit with ideal devices, the power MOSFET is operated with a duty cycle of 0.4 in a switching cycle with \( I = 10 \, {A} \) and \( V = 15 \, {V} \). The power delivered by the current source, in W, is: \[ {(round off to the nearest integer).} \] 
The induced emf in a 3.3 kV, 4-pole, 3-phase star-connected synchronous motor is considered to be equal and in phase with the terminal voltage under no-load condition. On application of a mechanical load, the induced emf phasor is deflected by an angle of \( 2^\circ \) mechanical with respect to the terminal voltage phasor. If the synchronous reactance is \( 2 \, \Omega \), and stator resistance is negligible, then the motor armature current magnitude, in amperes, during loaded condition is closest to: \[ {(round off to two decimal places).} \]