Question:

A stone of mass $m$ is tied to a string and is moved in a vertical circle of radius $r$ making n rev/min. The total tension in the string when the stone is at the lowest point is

Updated On: Jul 6, 2022
  • mg
  • $m(g + \pi nr^2)$
  • m(g + nr)
  • $m\begin{Bmatrix}g+\frac{\pi^2n^2r}{900}\end{Bmatrix}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$T_{net} = \frac{m\nu^2}{r} + mg = mr\omega^2 + mg$ = $mr\left(\frac{2\pi n }{60}\right)^2 +mg$ = $m \left[\frac{\pi^2n^2r}{900} + g\right]$
Was this answer helpful?
0
0

Top Questions on Motion in a plane

View More Questions

Concepts Used:

Motion in a Plane

It is a vector quantity. A vector quantity is a quantity having both magnitude and direction. Speed is a scalar quantity and it is a quantity having a magnitude only. Motion in a plane is also known as motion in two dimensions. 

Equations of Plane Motion

The equations of motion in a straight line are:

v=u+at

s=ut+½ at2

v2-u2=2as

Where,

  • v = final velocity of the particle
  • u = initial velocity of the particle
  • s = displacement of the particle
  • a = acceleration of the particle
  • t = the time interval in which the particle is in consideration