Step 1: Use the formula for wave speed on a stretched string
\[ v = \sqrt{\frac{T}{\mu}} \] where \( T = \) tension and \( \mu = \) mass per unit length.
Step 2: Convert length and compute linear mass density
Length \( L = 81 \, \text{cm} = 0.81 \, \text{m} \)
Mass \( m = 5 \times 10^{-3} \, \text{kg} \)
\[ \mu = \frac{m}{L} = \frac{5 \times 10^{-3}}{0.81} \approx 6.17 \times 10^{-3} \, \text{kg/m} \] Step 3: Calculate wave speed
\[ v = \sqrt{\frac{50}{6.17 \times 10^{-3}}} \approx \sqrt{8100} = 90 \, \text{m/s} \]
Match List-I with List-II on the basis of two simple harmonic signals of the same frequency and various phase differences interacting with each other:
LIST-I (Lissajous Figure) | LIST-II (Phase Difference) | ||
---|---|---|---|
A. | Right handed elliptically polarized vibrations | I. | Phase difference = \( \frac{\pi}{4} \) |
B. | Left handed elliptically polarized vibrations | II. | Phase difference = \( \frac{3\pi}{4} \) |
C. | Circularly polarized vibrations | III. | No phase difference |
D. | Linearly polarized vibrations | IV. | Phase difference = \( \frac{\pi}{2} \) |
Choose the correct answer from the options given below: